
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 5: CPU Scheduling

Outline

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.2

▪ Basic Concepts

▪ Scheduling Criteria

▪ Scheduling Algorithms

▪ Algorithm Evaluation

Objectives

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.3

▪ Describe various CPU scheduling algorithms

▪ Assess CPU scheduling algorithms based on scheduling criteria

▪ Apply modeling and simulations to evaluate CPU scheduling algorithms

Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.4

▪ An OS must allocate resources amongst competing

processes.

▪ The resource provided by a processor is execution time.

▪ The resource is allocated by means of scheduling

▪ determines which processes will wait and which

will progress.

▪ The aim of processor scheduling is to assign processes

to be executed by the processor over time, in a way that

meets system objectives:

▪ response time, throughput, and processor efficiency.

Scheduling Objectives

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.5

The scheduling function should

• Share time fairly among processes

• Prevent starvation of a process

• Use the processor efficiently

• Have low overhead

• Prioritise processes when necessary (e.g. real time deadlines)

Types of Scheduling

▪ Long-term scheduling is performed when a new process is created.

• This is a decision whether to add a new process to the set of processes
that are currently active.

▪ Medium-term scheduling is a part of the swapping function.

• This is a decision whether to add a process to those that are at least
partially in main memory and therefore are available for execution.

▪ Short-term scheduling is the actual decision of which ready process to
execute next. Known as the dispatcher.

Long-term scheduling The decision to add to the pool of processes to be
executed

Medium-term scheduling The decision to add to the number of processes that
are partially or fully in main memory

Short-term scheduling The decision as to which available process will be
executed by the processor

I/O scheduling The decision as to which process's pending I/O
request shall be handled by an available I/O device

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.6

E
ve

n
t

O
cc

u
rs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ready/
Suspend

New

Ready

Blocked

Running Exit

(b) With Two Suspend States

Figure 3.9 Process State Transition Diagram with Suspend States

E
ve

n
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Activate

Suspend

Release

Blocked/
Suspend

Figure 9.1 Scheduling and Process State Transitions

Ready/
Suspend

New

Running Exit

Blocked

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Short-term
scheduling

Ready

Blocked/
Suspend

Running

Ready

Blocked

Short Term

Blocked,
Suspend

Ready,
Suspend

Medium Term

Long Term

New Exit

Figure 9.2

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Levels of Scheduling

Figure 9.3 Queuing Diagram for Scheduling

Event Wait

Time-out

ReleaseReady Queue Short-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Interactive
users

Batch
jobs

Processor

Ready, Suspend Queue

Event
Occurs

Blocked, Suspend Queue

Blocked Queue

Long-term
scheduling

Scheduling is a matter
of managing queues to
minimize queuing delay
and to optimize
performance.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Long-Term Scheduler

■ Determines which programs are
admitted to the system for
processing

■ Controls the degree of
multiprogramming

■ The more processes that
are created, the smaller the
percentage of time that
each process can be
executed

■ May limit to provide
satisfactory service to the
current set of processes

Creates processes
from the queue
when it can, but

must decide:

When the operating
system can take on

one or more
additional processes

Which jobs to
accept and turn into

processes

First come, first
served

Priority, expected
execution time, I/O

requirements

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Medium-Term Scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

■ Part of the swapping function

■ Swapping-in decisions are based on the need to manage the
degree of multiprogramming

■ Considers the memory requirements of the swapped-out
processes

Short-Term(CPU) Scheduling

■ Known as the dispatcher

■ Executes most frequently (reason to call it short-term scheduling)

■ Select from among the processes in ready queue, and allocate the CPU to one
of them.

■ Makes the fine-grained decision of which process to execute next

■ Invoked when an event occurs that may lead to the blocking of the current process
or that may provide an opportunity to preempt a currently running process in
favor of another

Examples:

• Clock interrupts
• I/O interrupts
• Operating system calls
• Signals (e.g., semaphores)

Basic Concepts

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.15

▪ Maximum CPU utilization obtained with
multiprogramming

▪ CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O
wait

▪ CPU burst followed by I/O burst

▪ CPU burst distribution is of main concern

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.16

Nonpreemptive
■ Once a process is in the

running state, it will
continue until it terminates
or blocks itself for I/O

Preemptive
■ Currently running process may

be interrupted and moved to
ready state by the OS

■ Decision to preempt may be
performed when a new process
arrives, when an interrupt occurs
that places a blocked process in
the Ready state, or periodically,
based on a clock interrupt

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Nonpreemptive vs Preemptive

CPU Scheduler

▪ The CPU scheduler selects from among the
processes in ready queue, and allocates a CPU
core to one of them

• Queue may be ordered in various ways

▪ When is CPU scheduler invoked?

▪ CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready (maybe the
process has a higher priority compare to the
one is currently running)

4. Terminates
▪ For situations 1 and 4, there is no choice in terms of

scheduling. A new process (if one exists in the ready
queue) must be selected for execution.

▪ For situations 2 and 3, however, there is a choice.

Scheduling under 1 and 4 is non-preemptive. It means the
process decides to leave the CPU by itself .
All other scheduling is preemptive. It means the OS forces the
process to leave the CPU.

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.18

Preemptive and Nonpreemptive Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.19

▪ When scheduling takes place only under circumstances 1 and 4, the
scheduling scheme is nonpreemptive.

▪ Otherwise, it is preemptive.

▪ Under Nonpreemptive scheduling, once the CPU has been allocated
to a process, the process keeps the CPU until it releases it either by
terminating or by switching to the waiting state.

▪ Virtually all modern operating systems including Windows, MacOS,
Linux, and UNIX use preemptive scheduling algorithms.

Dispatcher

▪ Dispatcher module gives control of the CPU to
the process selected by the CPU scheduler; this
involves:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user
program to restart that program

▪ Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.20

Scheduling Criteria

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.21

User oriented:
▪ Turnaround time – amount of time to execute a particular process

▪ Response time – amount of time it takes from when a request was submitted
until the first response is produced not output (for time-sharing environment).

▪ Waiting time – amount of time a process has been waiting in the ready queue

System oriented:
▪ CPU utilization – keep the CPU as busy as possible

▪ Throughput – # of processes that complete their execution per time unit

Criteria Definition Goal

CPU utilization The % of time the CPU is executing user level
process code.

Maximize

Throughput Number of processes that complete their
execution per time unit.

Maximize

Turnaround time Amount of time to execute a particular
process.

Minimize

Waiting time Amount of time a process has been
waiting in the ready queue.

Minimize

Response time
Amount of time it takes from when a
request was submitted until the first
response is produced.

Minimize

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.24

Scheduling criteria

Scheduling Algorithms

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.23

▪ First Come First Served (FCFS)

▪ Shortest Job First (SJF)

▪ Shortest Remaining Time First (SRTF)

▪ Highest Response Ratio Next (HRRN)

▪ Round Robin (RR)

▪ Virtual Round Robin (VRR)

▪ Multilevel Feedback Queue (MLFQ)

▪ Priority Scheduling (PR)

▪ Multilevel Queue

ready
queue

C PU

I/O queueI/Oevent I/O request

process
termination

fork achild

❖ First Come First Served (FCFS)

❖ Shortest Job First (SJF)

❖ Shortest Remaining Time First (SRTF)

❖ Highest Response Ratio Next (HRRN)

❖ Round Robin (RR)

❖ Virtual Round Robin (VRR)

❖ Multilevel Feedback Queue (MLFQ)

❖ Priority Scheduling (PR)

❖ Multilevel Queue

Scheduling algorithms

ready queue CPU

I/O event I/O request

process
termination

fork a child

FCFS

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.26

The first come, first served (commonly called FIFO – first in, first out) process

scheduling algorithm is the simplest process scheduling algorithm. Processes are

executed on the CPU in the same order they arrive to the ready queue.

First-Come, First-Served (FCFS)

I/O queue

Arrival Time: Time at which the process arrives in the ready queue.

Completion Time: Time at which process completes its execution.

Burst Time: Time required by a process for CPU execution.

Turn Around Time: Time Difference between completion time and arrival time.

Turn Around Time = Completion Time – Arrival Time

Waiting Time (W.T): Time Difference between turn around time and burst time.

Waiting Time = Turn Around Time – Burst Time

Response Time: Time at which the process received its first response.

First- Come, First-Served (FCFS) Scheduling

Process Arrival Time CPU Burst Time
P1 0 10

P2 3 6
P3 3 4
P4 8 3

P5 13 5

P1 P2 P3 P4 P5

10 16 20 23 28

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.27

0

5
Avg Waiting Time = 0+7+13+12+10 =8.4

10+13+17+15+15
Avg Response Time = =14

5

Gantt Chart:

5.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FCFS Scheduling (Cont.)

Advantages:

▪ FCFS is simple and easy

Disadvantages:

▪ FCFS is non-preemptive

▪ FCFS performs much better for long processes(CPU bound) than short
ones(I/O bound).

▪ Favors CPU bound processes.

• I/O-bound processes have to wait until CPU-bound process completes

▪ Convoy effect - short process behind long process

• Consider one CPU-bound and many I/O-bound processes

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.28

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.29

The convoy effect
When using FCFS scheduling, if I/O bound (short CPU burst) processes are
scheduled after CPU bound (long CPU burst) processes, the average waiting
time increases.

Long CPU burstShort CPU burstShort CPU burst

PID P1 P3 P2

CPU burst time 24 3 3

PID Waiting time

P1 6

P2 0

P3 3

P2 P3 P1

0 3 6 30

Gantt Charts for the FCFS schedules

PID P3 P2 P1

CPU burst time 3 3 24

P1 P2 P3

0 24 27 30

PID Waiting time

P1 0

P2 24

P3 27

Average waiting time

(0 + 24 + 27) / 3 = 17

Average waiting time

(6 + 0 + 3) / 3 = 3

The convoy effect
When using FCFS scheduling, if I/O bound (short CPU burst) processes are scheduled
after CPU bound (long CPU burst) processes, the average waiting time increases.

What is the optimal
schedule?

To answer this question we must first define

what we mean with optimal.

A better question

What schedule
minimizes the average

waiting time?

Shortest Job First

ready
queueready queue CPU

I/O queueI/O event I/O request

process
termination

fork a child

SJF

Shortest Job First (SJF) scheduling assigns the process estimated to

complete fastest, i.e, the process with shortest CPU burst, to the CPU

as soon as CPU time is available.

Shortest Job First (SJF)

Shortest-Job-First (SJF) Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.38

▪ Process with shortest expected processing time is selected next

▪ Short process jumps ahead of longer processes

▪ Non-preemptive policy

▪ Also known as Shortest Process Next (SPN)

▪ SJF is optimal

• Gives minimum average waiting time for a given set of processes

Shortest-Job-First (SJF) Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.39

Process Arrival Time CPU Burst Time
P1 0 10

P2 3 6

P3 3 4

P4 8 3

P5 13 5

P1 P4 P3 P5 P2

10 13 17 22 280

5
Avg Waiting Time = 0+ 19 + 10 + 2 + 4 =7

Gantt Chart:

Shortest-Job-First (SJF) Scheduling

Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©20185.40

▪ Associate with each process the length of its next CPU burst

• Use these lengths to schedule the process with the shortest time

▪ SJF is optimal – gives minimum average waiting time for a given set of
processes

• The difficulty is knowing the length of the next CPU request

Shortest-Job-First (SJF) Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.41

▪ Associate with each process the length of its next CPU burst

• Use these lengths to schedule the process with the shortest time

▪ SJF is optimal – gives minimum average waiting time for a given set of
processes

▪ Preemptive version called shortest-remaining-time-first

▪ How do we determine the length of the next CPU burst?

• Could ask the user

• Estimate

Determining Length of Next CPU Burst

▪ We need to estimate the required processing time (next CPU burst) of
each process.

▪ Estimation can be done by using the length of previous CPU bursts,
using exponential averaging

th
n

n +1

½

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.42

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.43

Examples of Exponential Averaging

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.44

▪ = 0

• n+1 = n

• Recent history does not count

▪ =1

• n+1 = tn
• Only the actual last CPU burst counts

▪ If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

▪ Since both and (1 -) are less than or equal to 1, each successive term
has less weight than its predecessor

Shortest Remaining Time First (SRTF)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.45

▪ SRTF is the preemptive version of SJF

• If the newly arrived process has a shorter running time than what is left
of the currently executing process, then the OS will preempt the current
process.

Shortest Remaining Time First (SRTF)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.46

Process Arrival Time CPU Burst Time
P1 0 10

P2 3 6

P3 3 4

P4 8 3

P5 13 5

3 7 8 11 13 160

5Avg Waiting Time = 18 + 7 + 0 + 0+3 =5.6

21

P1 P3 P2 P4 P2 P5 P1

28

Gantt Chart:

Highest Response Ratio Next (HRRN)

❑ Important SJF and SRTF disadvantage
❑ Possibility of starvation for longer processes

❑ HRRN choose next process with the greatest ratio

❑ A smaller denominator yields a larger ratioso that shorter jobs
are favoured,

❑ But aging without service increases the ratio so that a longer process will

eventually get past competing shorter jobs.

❑ Non-preemptive policy

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.47

Highest Response Ratio Next (HRRN)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.48

Process Arrival Time CPU Burst Time
P1 0 10

P2 3 6

P3

P4

P5

3

8

13

4

3

5

P1 P3 P4 P2 P5

10 14 17 23 280

5
Avg Waiting Time = 0+14+7 + 6+10 =7.4

13/6

11/4

5/3

17/6

9/3

6/5

20/6

9/5

Gantt Chart:

Round Robin

Robin = Rödhake in Swedish

In general, round-robin refers to a pattern or ordering
whereby items are encountered or processed sequentially,
often beginning again at the start in a circular manner.

Source: https://en.wikipedia.org/wiki/Round-robin 2016-01-31

Round Robin is one of the simplest CPU scheduling
algorithms that also prevents starvation.

Etymology
The phrase round-robin actually has nothing
whatever to do with a bird, robin or any other kind.

★ The term round-robin dates from the 17th-century
French ruban rond (round ribbon).

★ Originally, round-robin is a document signed by
multiple parties in a circle.

★ Round-robin described the practice of signatories to

petitions against authority (usually Government
officials petitioning the Crown) appending their names
on a document in a non-hierarchical circle or ribbon
pattern (and so disguising the order in which they
have signed) so that none may be identified as a
ringleader.

Source: https://en.wikipedia.org/wiki/Round-robin_(document) 2016-02-02

ready
queueready queue

I/O queueI/O event I/O request

process
termination

fork a child

RR

Round Robin (RR)
Round Robin (RR) is a scheduling algorithm where time slices are assigned

to each process in equal portions and in circular order.

CPU

T

time slice

Round Robin (RR)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.54

▪ RR is design specially for time sharing systems.

▪ It is similar to FCFS scheduling, but preemption is added to switch between
processes.

How it works:

▪ Ready queue is organized as a FIFO queue of processes

▪ Each process gets a small unit of CPU time (time quantum q), usually 10-100
milliseconds.

▪ After this time has elapsed, the process is preempted and added to the end of
the ready queue.

▪ Timer interrupts every quantum to schedule next process

▪ Performance

• q large FIFO

• q small q must be large with respect to context switch, otherwise overhead
is too high

Round Robin (RR)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.55

Process Arrival Time CPU Burst Time
P1 0 10

P2 3 6

P3 3 4

P4 8 3

P5 13 5

4 8 12 16 19 21

P1 P2 P3 P1 P4 P2 P5 P1 P5

0

5
Avg Waiting Time = 17 + 12+5 +8+10 =10.14

25 27 28

q = 4

Gantt Chart:

Round Robin (RR)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.56

▪ The average waiting time under the RR policy is often long.

▪ Performance

• q large FIFO

• q small processor sharing equally between all the processes
(completely fair!)

 q must be large with respect to context switch, otherwise overhead is too
high

 (in theory) creates the appearance that each of n processes has its own
processor running at 1/n the speed of the real processor.

 But q must be large compare to context switch, otherwise overhead is too
high (q usually 10ms to 100ms, context switch < 10 sec)

Time Quantum and Context Switch Time

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.57

Virtual Round Robin (VRR)

□ Similar to Round Robin

□ There is an FCFS auxiliary queue to which processes are moved after being

released from an I/O block.

□ Processes in the auxiliary queue get preference over those in the main ready

queue.

□ When a process is dispatched from the auxiliary queue, it runs no longer than a time

equal to the basic time quantum minus the total time spent running (of the last

execution, CPU burst) since it was last selected from the main ready queue.

Virtual Round Robin (VRR)

Multilevel Feedback Queue

□ Penalize jobs that have been running
longer

□ Example

□ Three queues:
■ RQ0 – RR with time quantum 8 milliseconds

■ RQ1 – RR time quantum 16 milliseconds

■ RQ2 –FCFS

Multilevel Feedback Queue

RR (q=8 ms) CPU

RR (q=16 ms) CPU

RR (q=32 ms) CPU

FCFS CPU

Multilevel Feedback Queue

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.62

Gantt Chart:

Process CPU Burst Time
P1 45

P2 20

P3 6

8 16 22 38 50

P1 P2 P3 P1 P2 P1

0

3
Avg Waiting Time = 26 + 30 + 16 =24

71

Priority Scheduling

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.63

▪ A priority number (integer) is associated with each process

▪ The CPU is allocated to the process with the highest priority (smallest integer
highest priority)

• Preemptive

• Non-preemptive

▪ SJF is priority scheduling where priority is the inverse of predicted next CPU
burst time

▪ Problem Starvation

• low priority processes may never execute

• Solution Aging – as time progresses increase the priority of the process

Priority Scheduling (non-preemptive)

Process Arrival Time CPU Burst Time Priority
P1 0 10 4

P2 3 6 2

P3 3 4 5

P4 8 3 3

P5 13 5 1

P1 P2 P5 P4 P3

10 16 21 24

Gantt Chart:

0 + 7 + 21 + 13 +3
Avg Waiting Time = = 8.8

5

28

Priority Scheduling (preemptive)

Process Arrival Time CPU Burst Time Priority
P1 0 10 4

P2 3 6 2

P3 3 4 5

P4 8 3 3

P5 13 5 1

P1 P2 P4 P1 P5 P1 P3

3 8 9 12 13 28

Gantt Chart

14 + 0 + 21 + 1 + 0
Avg Waiting Time = = 7.2

5

18 24

Multilevel Queue

□ Ready queue is partitioned into separate queues

□ foreground (interactive)

□ background (batch)

□ The processes are permanently assigned to one queue, generally based on some

property

□ Each queue has its own scheduling algorithm:

□ Foreground: RR

□ Background: FCFS

□ Scheduling must be done between the queues:

□ Fixed priority preemptive scheduling

□ Possibility of starvation.

□ Time slice – each queue gets a certain amount of CPU time which it can schedule amongst

its processes; i.e., 80% to foreground in RR 20% to background in FCFS

Multilevel Queue

▪ With priority scheduling, have separate queues for each priority.

▪ Schedule the process in the highest-priority queue!

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.67

Multilevel Queue

Multilevel Feedback Queue

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.69

▪ A process can move between the various queues.

▪ Multilevel-feedback-queue scheduler defined by the following
parameters:

• Number of queues

• Scheduling algorithms for each queue

• Method used to determine when to upgrade a process

• Method used to determine when to demote a process

• Method used to determine which queue a process will enter when that
process needs service

▪ Aging can be implemented using multilevel feedback queue

Example of Multilevel Feedback Queue

▪ Three queues:

• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

▪ Scheduling

• A new process enters queue Q0 which is
served in RR

 When it gains CPU, the process receives 8
milliseconds

 If it does not finish in 8 milliseconds, the process
is moved to queue Q1

• At Q1 job is again served in RR and receives
16 additional milliseconds

 If it still does not complete, it is preempted and
moved to queue Q2

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 5.70

Algorithm Evaluation

□ How do we select a CPU scheduling algorithm for a

particular system?

□ Deterministic Modeling

■ takes a particular predetermined workload and defines the performance of

each algorithm for that workload (prev. examples)

□ Queueing Models

□ Simulations

□ Implementation

Queueing Models

□ Using I/O and CPU burst distribution (exponential, Poisson, …) and also

arrival-time distribution, we can compute the average throughput,

utilization, waiting time, and so on for most algorithms.

□ Example: Little’s Formula

□ n = average queue length

□ W = average waiting time in queue

□ λ = average arrival rate into queue

□ Little’s law – in steady state, processes leaving queue must equal processes

arriving, thus n = λ x W

Simulations

□ Queueing models are limited and are often only approximations of real

systems

□ Simulations are more accurate

□ Programmed model of computer system

□ Clock is a variable

□ Gather statistics indicating algorithm performance

□ Data to drive simulation gathered via

■ Random number generator according toprobabilities

■ Distributions defined mathematically or empirically

■ Trace tapes record sequences of real events inreal systems

Implementation

□ Even simulations have limited accuracy

□ Just implement new scheduler and test in real systems

□ High cost, high risk

□ Environments vary

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 5

